Unsupervised MRI segmentation with spatial connectivity

نویسندگان

  • Mohammad Mehdi Khalighi
  • Hamid Soltanian-Zadeh
  • Caro Lucas
چکیده

Magnetic Resonance Imaging (MRI) offers a wealth of information for medical examination. Fast, accurate and reproducible segmentation of MRI is desirable in many applications. We have developed a new unsupervised MRI segmentation method based on k-means and fuzzy c-means (FCM) algorithms, which uses spatial constraints. Spatial constraints are included by the use of a Markov Random Field model. The result of segmentation with a four-neighbor Markov Random Field model applied to multi-spectral MRI (5 images including one T1-weighted image, one Proton Density image and three T2-weighted images) in different noise levels is compared to the segmentation results of standard k-means and FCM algorithms. This comparison shows that the proposed method outperforms previous methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Intrathoracic Airway Tree Segmentation from CT Images Using a Fuzzy Connectivity Method

Introduction: Virtual bronchoscopy is a reliable and efficient diagnostic method for primary symptoms of lung cancer. The segmentation of airways from CT images is a critical step for numerous virtual bronchoscopy applications. Materials and Methods: To overcome the limitations of the fuzzy connectedness method, the proposed technique, called fuzzy connectivity - fuzzy C-mean (FC-FCM), utilized...

متن کامل

Small Lesions Evaluation Based on Unsupervised Cluster Analysis of Signal-Intensity Time Courses in Dynamic Breast MRI

An application of an unsupervised neural network-based computer-aided diagnosis (CAD) system is reported for the detection and characterization of small indeterminate breast lesions, average size 1.1 mm, in dynamic contrast-enhanced MRI. This system enables the extraction of spatial and temporal features of dynamic MRI data and additionally provides a segmentation with regard to identification ...

متن کامل

Unsupervised Myocardial Segmentation for Cardiac MRI

Though unsupervised segmentation was a de-facto standard for cardiac MRI segmentation early on, recently cardiac MRI segmentation literature has favored fully supervised techniques such as Dictionary Learning and Atlas-based techniques. But, the benefits of unsupervised techniques e.g., no need for large amount of training data and better potential of handling variability in anatomy and image c...

متن کامل

Automated Prostate Gland Segmentation Based on an Unsupervised Fuzzy C-Means Clustering Technique Using Multispectral T1w and T2w MR Imaging

Prostate imaging analysis is difficult in diagnosis, therapy, and staging of prostate cancer. In clinical practice, Magnetic Resonance Imaging (MRI) is increasingly used thanks to its morphologic and functional capabilities. However, manual detection and delineation of prostate gland on multispectral MRI data is currently a time-expensive and operator-dependent procedure. Efficient computer-ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002